Reglas de derivación (II)

Para derivar cualquier función basta con conocer las propiedades de la derivación y, con objeto de simplificar los cálculos, memorizar las fórmulas genéricas de las derivadas de las funciones potenciales, exponenciales, logarítmicas y trigonométricas.

Funciones potencial, logarítmica y exponencial

La derivada de una función potencial, que se expresa como f (x) = un (x), se calcula como el producto del exponente por la derivada de la función u (x) y por la función u (x) elevada a un grado menos (n-1).

La derivada de una función logarítmica, de fórmula general f (x) = loga u(x), se obtiene como el cociente de la derivada de u (x) por la propia función u (x) y todo ello multiplicado por el logaritmo en base a del número e. Esta fórmula se simplifica para los logaritmos neperianos, ya que loge e = 1.

Finalmente, para derivar una función exponencial de expresión general f (x) = au(x), se multiplica la propia función por la derivada del exponente, y todo ello multiplicado por el logaritmo neperiano de la base. Como caso particular, hay que resaltar que la función y = ex tiene como derivada ella misma (y¿ = ex).

Funciones trigonométricas

La derivación de funciones trigonométricas se resume en unas reglas muy sencillas de recordar. En esencia, la derivada del seno es igual al coseno, y la del coseno coincide con el seno cambiado de signo (todo ello multiplicado, claro está, por la derivada de la función que figura como argumento de la razón trigonométrica). Es decir:

Las restantes funciones trigonométricas se determinan aplicando las reglas de la derivación de un cociente de funciones (para la tangente, la cotangente, etcétera) y la regla de la cadena (para las funciones circulares inversas).

Derivación de una función implícita

La derivación de una función expresada en la forma explícita y 5 f (x) es sencilla si se conocen las reglas de derivación. En cambio, esta tarea se complica cuando la función que ha de derivarse está implícita en una expresión (por ejemplo: y3 + xy ++ 2x = 5, donde se ha de derivar y).

Para obtener esta derivada, lo primero que hay que hacer es despejar y. A veces, esta operación resulta complicada, por lo que resulta preferible aplicar el procedimiento siguiente:

  • Derivar los dos miembros de la ecuación implícita.
  • Despejar y¿ en la ecuación resultante.Tal valor será el resultado de la derivada de la función implícita.

Tabla de derivadas

A partir de las fórmulas de las derivadas de las funciones potenciales, exponenciales, logarítmicas y trigonométricas y de la aplicación de las propiedades de derivación, es posible obtener fácilmente la derivada de cualquier función explícita. En la tabla adjunta se resumen las reglas generales de derivación.

Tabla de derivadas de funciones comunes:

A partir de ellas y aplicando las propiedades y reglas de derivación, puede obtenerse la derivada de cualquier función de estructura más compleja:

Enviar la página por correo a

< * Campos obligatorios

Muchas gracias.
El artículo ha sido enviado correctamente.

cerrar ventana
¡Ayúdanos a mejorar! Tu opinión es importante, por lo que agradecemos que nos envíes tus opiniones y sugerencias a info@hiru.eus

* Campos obligatorios
cerrar ventana

 

¿Qué son los iconos de "Compartir"?

 

Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.

¿Para qué sirve cada uno?

  • facebook

    Facebook

    Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.

     
  • eskup

    Eskup

    Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.

     
  • delicious

    Twitter

    Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.

     
  • tuenti

    Tuenti

    Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.

     
  • technorati

    Google Buzz

    Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.

     
  • meneame

    Meneame

    Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.

     
 

 

cerrar ventana

Derechos de reproducción de la obra

 

Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.

No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.

Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.

La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.

  Privacidad

Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.

El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.

cerrar ventana