Más información
Origen de los números
Sistemas de numeración de las primeras civilizaciones
Desde el Neolítico, los sistemas de cómputo y numeración se fueron complicando y enriqueciendo progresivamente. Las grandes civilizaciones de la Antigüedad se distinguieron por un importante desarrollo de la aritmética y la geometría, que desembocó en la creación de sistemas de numeración sistemáticos. Así, por ejemplo:
- Los primeros signos numéricos egipcios conocidos datan de hace unos 7.000 años. Su método se basaba en agrupar los elementos de diez en diez, y asignar a cada grupo de diez un símbolo diferente.
- Los babilonios utilizaban, hacia el año 1700 a. C., un sistema de numeración de base 60, enormemente complicado por la cantidad de numerales que consideraba.
- La civilización grecolatina utilizó las letras del alfabeto como signos numerales. Su sistema de numeración contaba de diez en diez.
- En América, la cultura maya usaba desde el siglo IV d. C. un sistema de numeración de base 20, en el que, por primera vez en la historia, se utilizó la noción de número cero.
- En la India, se desarrolló un sistema de representación de números del que deriva el actual, que fue transmitido a Occidente a través de los árabes.
La numeración romana
El Imperio romano difundió en toda Europa, norte de África y Asia occidental su propio sistema de numeración, que todavía se utiliza en algunos contextos especiales. Este sistema, de base decimal, utiliza letras como símbolos de varias unidades elementales (I para 1;V para 5; X para 10; L para 50; C para 100; D para 500 y M para 1.000).
El sistema romano resultaba muy práctico para realizar sumas y restas, aunque no multiplicaciones y divisiones. Por ello, aun cuando se conserva para indicar ciertas cantidades (por ejemplo, años), desde el Renacimiento fue desplazado por el sistema indo-arábigo.
Símbolos indo-arábigos
La notación numérica usada universalmente en la actualidad procede de sistemas de numeración hindúes ya existentes hacia el siglo VI d. C. Estos sistemas ofrecían respecto de los utilizados en Europa dos ventajas sustanciales:
- El concepto del número 0, que, aunque probablemente fue importado de las culturas mesopotámicas, se integró por primera vez en un sistema decimal junto con las otras nueve cifras del sistema. (La noción del cero había sido también desarrollada en América por la cultura maya.)
- La asignación de un valor posicional a cada cifra, de manera que un mismo guarismo tenía un valor diferente según su posición global en la expresión de la cantidad numérica.
Este sistema fue adoptado por los árabes antes del siglo IX, y popularizado por los escritos de Muhammad ibn Musa al-Khwarizmi (h. 780-h. 850), autor del primer manual de aritmética inspirado en el sistema decimal posicional.
En el siglo XIII, las traducciones al latín de las obras de los matemáticos árabes hicieron posible que los sabios escolásticos medievales conocieran los principios del sistema numeral posicional. No obstante, fue el italiano Leonardo de Pisa quien, en su obra Liber abaci (1202), ofreció una exposición de las cifras hindúes en la que se sitúa el origen del sistema moderno de numeración.
La grafía de los numerales tomados del sistema de numeración indo-arábigo experimentó ciertos cambios desde su adopción en Europa en el siglo XII hasta su expresión actual.
El lenguaje universal de los números
Con respecto al sistema romano, el indo-arábigo proporciona indudables ventajas en el plano práctico y conceptual:
- Se crea a partir de una notación sencilla, basada en el uso de diez guarismos, entre los que se incluye el cero, y conceptualmente rica, por la idea del valor posicional de los numerales.
- Permite simplificar de forma muy notable las operaciones aritméticas de multiplicación y división, sin complicar las de suma y resta.
- Resulta adecuado para los desarrollos de la matemática moderna.
Por todo ello, el sistema indo-arábigo se ha impuesto progresivamente en todas las culturas del mundo, hasta el punto de que en la actualidad constituye un lenguaje escrito universal comprendido por todos los seres humanos, que utiliza una misma grafía incluso en idiomas cuyos alfabetos son diferentes (latino, cirílico, alfabetos orientales, etcétera).
Enviar la página por correo a
¿Qué son los iconos de "Compartir"?
Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.
¿Para qué sirve cada uno?
-
Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.
-
Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.
-
Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.
-
Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.
-
Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.
-
Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.
Derechos de reproducción de la obra
-
Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.
No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.
Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.
La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.
Privacidad
Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.
El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.
- Matemática: fundamentos básicos
- Origen de los números
- Sistemas de numeración
- Operaciones sencillas
- Hiruko Erregela
- Cálculo mental
- Superficies
- Números naturales y enteros
- Números racionales
- Ecuaciones de primer grado
- Sistemas de ecuaciones de primer grado
- Ecuaciones de segundo grado
- Sistemas de ecuaciones de segundo grado e inecuaciones con varias incógnitas
- Números irracionales
- Números reales y complejos
- Progresiones aritméticas y geométricas
- Matemáticas financieras
- Resolución de ecuaciones lineales con más de dos incógnitas