Más información
Medidas de tendencia central
Medidas de centralización
Se llama medidas de posición, tendencia central o centralización a unos valores numéricos en torno a los cuales se agrupan, en mayor o menor medida, los valores de una variable estadística. Estas medidas se conocen también como promedios.
Para que un valor pueda ser considerado promedio, debe cumplirse que esté situado entre el menor y el mayor de la serie y que su cálculo y utilización resulten sencillos en términos matemáticos.
Se distinguen dos clases principales de valores promedio:
- Las medidas de posición centrales: medias (aritmética, geométrica, cuadrática, ponderada), mediana y moda.
- Las medidas de posición no centrales: entre las que destacan especialmente los cuantiles.
Las medidas de centralización son parámetros representativos de distribuciones de frecuencia como las que ilustra la imagen.
Media aritmética
Se define media aritmética de una serie de valores como el resultado producido al sumar todos ellos y dividir la suma por el número total de valores. La media aritmética se expresada como .
Dada una variable x que toma los valores x1, x2, ..., xn, con frecuencias absolutas simbolizadas por f1, f2, ..., fn, la media aritmética de todos estos valores vendrá dada por:
Media ponderada
En algunas series estadísticas, no todos los valores tienen la misma importancia. Entonces, para calcular la media se ponderan dichos valores según su peso, con lo que se obtiene una media ponderada.
Si se tiene una variable con valores x1, x2, ..., xn, a los que se asigna un peso mediante valores numéricos p1, p2, ..., pn, la media ponderada se calculará como sigue:
Mediana
La media aritmética no siempre es representativa de una serie estadística. Para complementarla, se utiliza un valor numérico conocido como mediana o valor central.
Dado un conjunto de valores ordenados, su mediana se define como un valor numérico tal que se encuentra en el centro de la serie, con igual número de valores superiores a él que inferiores. Normalmente, la mediana se expresa como Me.
La mediana es única para cada grupo de valores. Cuando el número de valores ordenados (de mayor a menor, o de menor a mayor) de la serie es impar, la mediana corresponderá al valor que ocupe la posición (n + 1)/2 de la serie. Si el número de valores es par, ninguno de ellos ocupará la posición central. Entonces, se tomará como mediana la media aritmética entre los dos valores centrales.
Determinación de la mediana de una serie de valores.
Moda
En una serie de valores a los que se asocia una frecuencia, se define moda como el valor de la variable que posee una frecuencia mayor que los restantes. La moda se simboliza normalmente por Mo.
Un grupo de valores puede tener varias modas. Una serie de valores con sólo una moda se denomina unimodal; si tiene dos modas, es bimodal, y así sucesivamente.
Enviar la página por correo a
¿Qué son los iconos de "Compartir"?
Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.
¿Para qué sirve cada uno?
-
Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.
-
Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.
-
Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.
-
Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.
-
Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.
-
Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.

Derechos de reproducción de la obra
-
Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.
No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.
Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.
La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.
Privacidad
Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.
El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.

- Estadística
- Conceptos de probabilidad
- Probabilidad condicionada y compuesta
- Distribución probabilística
- Combinatoria
- Números combinatorios
- Distribución binomial
- Distribución normal
- Variables estadísticas
- Representación gráfica de datos estadísticos
- Medidas de tendencia central
- Medidas de dispersión
- Tablas de doble entrada
- Recta de regresión y correlaciones
- Muestreo estadístico
- Distribución muestral
- Inferencia estadística
- Intervalos de confianza
- Aplicaciones de la estadística
- Elaboración de encuestas
- Los porcentajes