Medidas de dispersión

Las medidas de tendencia central ofrecen una idea aproximada del comportamiento de una serie estadística. No obstante, no resultan suficientes para expresar sus características: una misma media puede provenir de valores cercanos a la misma o resultar de la confluencia de datos estadísticos enormemente dispares. Para conocer en que grado las medidas de tendencia central son representativas de la serie, se han de complementar con medidas de dispersión como la varianza o la desviación típica.

Concentración y dispersión

Las medidas de centralización ayudan a determinar el «centro de gravedad» de una distribución estadística. Para describir el comportamiento general de la serie se necesita, sin embargo, una información complementaria para saber si los datos están dispersos o agrupados.

Así, las medidas de dispersión pueden definirse como los valores numéricos cuyo objeto es analizar el grado de separación de los valores de una serie estadística con respecto a las medidas de tendencia central consideradas.

Las medidas de dispersión son de dos tipos:

  • Medidas de dispersión absoluta: como recorrido, desviación media, varianza y desviación típica, que se usan en los análisis estadísticos generales.
  • Medidas de dispersión relativa: que determinan la dispersión de la distribución estadística independientemente de las unidades en que se exprese la variable. Se trata de parámetros más técnicos y utilizados en estudios específicos, y entre ellas se encuentran los coeficientes de apertura, el recorrido relativo, el coeficiente de variación (índice de dispersión de Pearson) y el índice de dispersión mediana.

La distribución normal, o campana de Gauss, es una función simétrica (con la media aritmética en el centro de la serie) con un grado de dispersión bajo (la mayoría de los valores están comprendidos dentro del valor de la desviación típica ).

Recorrido

La medida de dispersión más inmediata es el recorrido de la distribución estadística, también llamado rango o amplitud. Dada una serie de valores x1, x2, ..., xn, su recorrido es la diferencia aritmética entre el máximo y el mínimo de estos valores:

Desviación media

Como medida de dispersión más frecuentemente utilizada, la desviación media se define como la media aritmética de los valores absolutos de la desviación de cada valor de la variable con respecto a la media. Su formulación matemática es la siguiente:

Varianza y desviación típica

La desviación media no siempre suministra una idea clara del grado de separación entre los valores de una variable estadística. Para estudios científicos, se prefiere utilizar una pareja de parámetros relacionados que se conocen como varianza y desviación típica.

La varianza se define como el cociente entre la suma de los cuadrados de las desviaciones de los valores de la variable y el número de datos del estudio. Matemáticamente, se expresa como:

Por su parte, la desviación típica, simbolizada por s, se define sencillamente como la raíz cuadrada de la varianza:

Por lo tanto, se tiene que:

La varianza y la desviación típica, cada una con su respectivo valor, se usan indistintamente en los estudios estadísticos.

Enviar la página por correo a

< * Campos obligatorios

Muchas gracias.
El artículo ha sido enviado correctamente.

cerrar ventana
¡Ayúdanos a mejorar! Tu opinión es importante, por lo que agradecemos que nos envíes tus opiniones y sugerencias a info@hiru.eus

* Campos obligatorios
cerrar ventana

 

¿Qué son los iconos de "Compartir"?

 

Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.

¿Para qué sirve cada uno?

  • facebook

    Facebook

    Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.

     
  • eskup

    Eskup

    Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.

     
  • delicious

    Twitter

    Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.

     
  • tuenti

    Tuenti

    Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.

     
  • technorati

    Google Buzz

    Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.

     
  • meneame

    Meneame

    Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.

     
 

 

cerrar ventana

Derechos de reproducción de la obra

 

Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.

No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.

Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.

La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.

  Privacidad

Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.

El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.

cerrar ventana