La integral definida

Desde su origen, la noción de integral ha respondido a la necesidad de mejorar los métodos de medición de áreas subtendidas bajo líneas y superficies curvas. La técnica de integración se desarrolló sobre todo a partir del siglo XVII, paralelamente a los avances que tuvieron lugar en las teorías sobre derivadas y en el cálculo diferencial.

Concepto de integral definida

La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b.

La integral definida de la función entre los extremos del intervalo [a, b] se denota como:

Propiedades de la integral definida

La integral definida cumple las siguientes propiedades:

  • Toda integral extendida a un intervalo de un solo punto, [a, a], es igual a cero.
  • Cuando la función f (x) es mayor que cero, su integral es positiva; si la función es menor que cero, su integral es negativa.
  • La integral de una suma de funciones es igual a la suma de sus integrales tomadas por separado.
  • La integral del producto de una constante por una función es igual a la constante por la integral de la función (es decir, se puede «sacar» la constante de la integral).
  • Al permutar los límites de una integral, ésta cambia de signo.
  • Dados tres puntos tales que a < b < c, entonces se cumple que (integración a trozos):

  • Para todo punto x del intervalo [a,b] al que se aplican dos funciones f (x) y g (x) tales que f (x) £ g (x), se verifica que:

Ilustración gráfica del concepto de integral definida.

Función integral

Considerando una función f continua en [a, b] y un valor x Î [a, b], es posible definir una función matemática de la forma:

donde, para no inducir a confusión, se ha modificado la notación de la variable independiente de x a t. Esta función, simbolizada habitualmente por F (x), recibe el nombre de función integral o, también, función área pues cuando f es mayor o igual que cero en [a, b], F (x) nos da el área.

Interpretación geométrica de la función integral o función área.

Teorema fundamental del cálculo integral

La relación entre derivada e integral definida queda establecida definitivamente por medio del denominado teorema fundamental del cálculo integral, que establece que, dada una función f (x), su función integral asociada F (x) cumple necesariamente que:

A partir del teorema fundamental del cálculo integral es posible definir un método para calcular la integral definida de una función f (x) en un intervalo [a, b], denominado regla de Barrow:

  • Se busca primero una función F (x) que verifique que F¿ (x) = f (x).
  • Se calcula el valor de esta función en los extremos del intervalo: F (a) y F (b).
  • El valor de la integral definida entre estos dos puntos vendrá entonces dado por:

Enviar la página por correo a

< * Campos obligatorios

Muchas gracias.
El artículo ha sido enviado correctamente.

cerrar ventana
¡Ayúdanos a mejorar! Tu opinión es importante, por lo que agradecemos que nos envíes tus opiniones y sugerencias a info@hiru.eus

* Campos obligatorios
cerrar ventana

 

¿Qué son los iconos de "Compartir"?

 

Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.

¿Para qué sirve cada uno?

  • facebook

    Facebook

    Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.

     
  • eskup

    Eskup

    Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.

     
  • delicious

    Twitter

    Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.

     
  • tuenti

    Tuenti

    Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.

     
  • technorati

    Google Buzz

    Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.

     
  • meneame

    Meneame

    Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.

     
 

 

cerrar ventana

Derechos de reproducción de la obra

 

Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.

No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.

Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.

El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.

La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.

  Privacidad

Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.

El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.

cerrar ventana