Más información
Integrales indefinidas
Primitivas
Dada una función f (x), se dice que la función F (x) es primitiva de ella si se verifica que F¿ (x) = f (x). La operación consistente en obtener la primitiva de una función dada se denomina integración, que es la inversa de la derivación.
De esta definición se desprende que la función f (x) posee infinitas primitivas, ya que si F (x) es primhtiva de f (x), también lo será cualquier otra función definida como G (x) = F (x) + C, siendo C un valor constante.
El conjunto de todas las primitivas de una función f (x) dada se denomina integral indefinida de la función, y se denota genéricamente como:Las primitivas de una función forman una familia de curvas desplazadas verticalmente unas de otras. Así, la función f (x) = x tiene infinitas primitivas que difieren en una constante, tal como se muestra a la derecha.
Propiedades de las primitivas
Aplicando las propiedades de la derivación (ver t43), es posible determinar algunas propiedades comunes de la integración. Las siguientes propiedades de linealidad sirven para descomponer integrales complicadas en otras más sencillas:
- La integral de la suma (o diferencia) de dos funciones es igual a la suma (o diferencia) de las integrales de cada una de ellas.
- La integral del producto de una constante por una función es igual al producto de la constante por la integral de la función.
Tabla de integrales inmediatas
En la tabla siguiente se resumen las reglas de integración de algunas funciones comunes. En general, se llama integrales inmediatas a las que se deducen directamente de esta tabla y de las propiedades de linealidad de la integración.
Tabla de integrales inmediatas.
Enviar la página por correo a
¿Qué son los iconos de "Compartir"?
Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.
¿Para qué sirve cada uno?
-
Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.
-
Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.
-
Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.
-
Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.
-
Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.
-
Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.
Derechos de reproducción de la obra
-
Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.
No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.
Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.
La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.
Privacidad
Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.
El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.
- Funciones, derivadas e integrales
- Funciones y sistemas de referencia
- La función cuadrática
- Polinomios
- Raíces de un polinomio y factorización
- Funciones polinómicas
- Logaritmos
- Funtzio esponentziala
- Función logarítmica
- Funtzio trigonometrikoak
- Función de proporcionalidad inversa
- Límite de una función
- Continuidad de funciones
- Derivada de una función
- Derivabilidad y continuidad
- Reglas de derivación (I)
- Reglas de derivación (II)
- Estudio de funciones
- Representación gráfica de funciones
- La integral definida
- Integrales indefinidas
- Métodos de integración