Más información
Ecuaciones de primer grado
Igualdades, identidades y ecuaciones
Se llama expresión algebraica a una combinación de números y letras ligados por los signos de las operaciones del cálculo. Al igualar dos expresiones algebraicas, se obtiene una igualdad.
Una igualdad de expresiones algebraicas se denomina ecuación cuando sólo se cumple para determinados valores de la variable o variables (soluciones de la ecuación), e identidad si se cumple para todo valor de la variable o variables (incógnitas) que contiene. Dos ecuaciones son equivalentes si tienen las mismas soluciones.
¡Transeúnte!, en esta tumba yacen los restos de Diofanto. De la lectura de este texto podrás saber un dato de su vida. Su infancia ocupó la sexta parte de su vida, después transcurrió una doceava parte hasta que su mejilla se cubrió de vello. Pasó aún una séptima parte de su existencia hasta contraer matrimonio. Cinco años más tarde tuvo lugar el nacimiento de su primogénito, que murió al alcanzar la mitad de la edad que su padre llegó a vivir. Tras cuatro años de profunda pena por la muerte de su hijo, Diofanto murió. De todo esto, dime cuántos años vivió Diofanto. |
---|
Epigrama del siglo V o VI d.C. propuesto a modo de ecuación por un discípulo de Diofanto para explicar datos de la vida de este sabio griego:
Clases de ecuaciones
Las ecuaciones algebraicas se clasifican según distintos criterios:
- Según el número de incógnitas: Ecuaciones de una incógnita, de dos, de tres, ?, de n incógnitas.
- Según el término de mayor grado: de primer grado (lineales), segundo grado (cuadráticas), tercer grado (cúbicas), ? de grado n.
- Según la forma de presentación de las variables: enteras, cuando no existe ninguna incógnita en el denominador; fraccionarias, con incógnitas en algún denominador; racionales, si las incógnitas no aparecen dentro de raíces cuadradas, cúbicas, etcétera, e irracionales, si las incógnitas se presentan dentro de alguna de estas raíces.
Propiedades de las igualdades
Para la resolución de ecuaciones algebraicas es preciso tener en cuenta las propiedades elementales de las igualdades:
- Cuando se suma o resta un mismo número a los dos miembros de una ecuación se obtiene una ecuación equivalente.
- Si los dos miembros de una ecuación se multiplican o dividen globalmente por un mismo número, el resultado es también una ecuación equivalente. Cuando se divida tiene que ser por un número distinto de cero.
Estas propiedades suelen utilizarse para transponer términos, mediante dos técnicas complementarias:
- Sumar en ambos miembros de una ecuación el valor opuesto (cambiado de signo) de un término que se quiera transponer de un miembro a otro.
- Multiplicar ambos miembros por el inverso del término que se quiera transponer.
Ecuaciones de primer grado con una incógnita
La resolución de problemas algebraicos se basa en el concepto de ecuaciones equivalentes. Esta idea tiene particular aplicación en el caso de las ecuaciones lineales o de primer grado en las que sólo existe una incógnita (normalmente denotada por x), siempre en el numerador de los términos y elevada al grado 1. Un ejemplo de ecuación de primer grado, con una incógnita sería 3x + 5 = 4 × (1 - x) ++ 2x.
Para resolver las ecuaciones de primer grado con una incógnita, se emplea un procedimiento genérico que se ilustra en el ejemplo adjunto:
Sea la ecuación:
Para resolverla se aplican los siguientes pasos:
- 1. Se eliminan denominadores, multiplicando ambos miembros por el mínimo común múltiplo de todos los denominadores que aparezcan (en el ejemplo, sería 12). Entonces, se obtiene: 9x + 48 = 48 (1 - x) + 16x
- 2. Se eliminan los paréntesis, con lo que queda: 9x + 48 = 48 - 48x + 16x
- 3. Se transponen términos, agrupando los que tengan la incógnita en un miembro y los que no la tengan en el otro: 9x + 48x - 16x = 48 - 48
- 4. Se simplifican los dos miembros, efectuando las operaciones necesarias: 41x = 0
- 5. Se despeja la incógnita: x = 0
- 6. Se comprueba la solución sustituyéndola por la incógnita en la ecuación inicial.
Inecuaciones
Paralelamente a los conceptos de igualdad y ecuación pueden definirse los de desigualdad e inecuación. Una desigualdad resulta de la comparación entre dos expresiones algebraicas separadas por los símbolos menor (<), mayor (>), menor o igual (£) o mayor o igual (³). El resultado de esta desigualdad es una inecuación.
Resolver una inecuación es hallar el valor o conjunto de valores (raíces) que la verifican, de manera que distintas inecuaciones con iguales soluciones se dicen equivalentes. Un ejemplo de inecuación podría ser 3x + 5 ³ 4 × (1 - x) + 2x.
Propiedades de las desigualdades
Para resolver inecuaciones se aplican las siguientes propiedades de las desigualdades:
- Cuando se suma o resta un mismo término en ambos miembros de una inecuación se obtiene una inecuación equivalente.
- Si se multiplican o dividen los dos miembros de una inecuación por un número o cantidad positivos, la inecuación resultante es equivalente; si este número o cantidad son negativos, la inecuación resultante es también equivalente, pero ha de invertirse el signo de la desigualdad.
Estas propiedades se utilizan, al igual que en las ecuaciones, para transponer términos y obtener las raíces o soluciones.
Enviar la página por correo a
¿Qué son los iconos de "Compartir"?
Todos los iconos apuntan a servicios web externos y ajenos a HIRU.com que facilitan la gestión personal o comunitaria de la información. Estos servicios permiten al usuario, por ejemplo, clasificar , compartir, valorar, comentar o conservar los contenidos que encuentra en Internet.
¿Para qué sirve cada uno?
-
Comparte con amigos y otros usuarios fotos, vídeos, noticias y comentarios personales, controlando la privacidad de los mismos.
-
Conversa sobre los temas que te interesan y que proponen los expertos. Todo ello en 280 caracteres con fotos y vídeos. Lee, pregunta e infórmate.
-
Contacta y comparte con amigos, familiares y compañeros de trabajo mensajes cortos (tweets) de no más de 140 caracteres.
-
Conéctate, comparte y comunícate con tus amigos, compañeros de trabajo y familia.
-
Comparte tus novedades, fotos y vídeos con tus amigos e inicia conversaciones sobre los temas que te interesan.
-
Sitio web que se sirve de la inteligencia colectiva para dar a conocer noticias. Los usuarios registrados envían historias que los demás usuarios del sitio pueden votar.
Derechos de reproducción de la obra
-
Los derechos de propiedad intelectual de la web hiru.eus y de los distintos elementos en ella contenidos son titularidad del Departamento de Educación, Universidades e Investigación del Gobierno Vasco.
No obstante, se permite el uso de los contenidos de hiru.eus en el ámbito educativo, siempre que se haga referencia y bajo las condiciones de licencia Creative Commons CC-BY-NC-SA.
Para más información: descarga el PDF (969,4k) .El Departamento de Educación, Universidades e Investigación del Gobierno Vasco se reserva la facultad de efectuar, en cualquier momento y sin necesidad de previo aviso, modificaciones y actualizaciones sobre la información contenida en su web o en su configuración o presentación.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no garantiza la inexistencia de errores en el acceso a la web, en su contenido, ni que éste se encuentre oportunamente actualizado, aunque desarrollará los esfuerzos precisos para evitarlos y, en su caso, subsanarlos o actualizarlos a la mayor brevedad posible.
Tanto el acceso a la web, como el uso que pueda hacerse de la información contenida en el mismo son de la exclusiva responsabilidad de quien lo realiza. El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no responderá de ninguna consecuencia, daño o perjuicio que pudieran derivarse de dicho acceso o uso de información, con excepción de todas aquellas actuaciones que resulten de la aplicación de las disposiciones legales a las que deba someterse en el estricto ejercicio de sus competencias.
El Departamento de Educación, Universidades e Investigación del Gobierno Vasco no asume responsabilidad alguna derivada de la conexión o contenidos de los enlaces de terceros a los que se hace referencia en la web.
La utilización no autorizada de la información contenida en esta web, el uso indebido de la misma, así como los perjuicios y quebrantos ocasionados en los derechos de propiedad intelectual e industrial del Departamento de Educación, Universidades e Investigación del Gobierno Vasco dará lugar al ejercicio de las acciones que legalmente le correspondan a dicha Administración y, en su caso, a las responsabilidades que de dicho ejercicio se deriven.
Privacidad
Los datos aportados por la persona interesada se utilizarán, con carácter único y exclusivo, para los fines previstos en el procedimiento o actuación que se trate.
El órgano responsable del fichero donde se recogen dichos datos es la Dirección de Aprendizaje Permanente del Departamento de Educación, Universidades e Investigación del Gobierno Vasco, ante quién podrán ejercerse los derechos de acceso, rectificación, cancelación y oposición. Para tal fin contacta con info@hiru.eus.
- Matemática: fundamentos básicos
- Origen de los números
- Sistemas de numeración
- Operaciones sencillas
- Hiruko Erregela
- Cálculo mental
- Superficies
- Números naturales y enteros
- Números racionales
- Ecuaciones de primer grado
- Sistemas de ecuaciones de primer grado
- Ecuaciones de segundo grado
- Sistemas de ecuaciones de segundo grado e inecuaciones con varias incógnitas
- Números irracionales
- Números reales y complejos
- Progresiones aritméticas y geométricas
- Matemáticas financieras
- Resolución de ecuaciones lineales con más de dos incógnitas